JOM 23362

Lineare Oligophosphaalkane

XXVI *. Funktionalisierte primäre Phosphane in der Clustersynthese – metallassistierte Fragmentierung von Ph₂P-CH₂-PH₂

Gisbert Heßler, Klaus P. Langhans und Othmar Stelzer

Fachbereich 9, Anorganische Chemie, Bergische Universität-GH Wuppertal, Gaußstr. 20, W-5600 Wuppertal 1 (Deutschland)

William S. Sheldrick

Fakultät für Chemie, Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, W-4630 Bochum 1 (Deutschland) (Eingegangen den 23. Oktober 1992)

Abstract

On reaction with diironenneacarbonyl the tertiary primary phosphine $Ph_2PCH_2PH_2$ yields the hydrido cluster $(\mu_2-H)(\mu_2-P$

Zusammenfassung

Das tertiär-primäre Phosphan $Ph_2CH_2PH_2$ reagiert mit Dieisenenneacarbonyl im Sinne einer oxidativen Addition der PH-Bindung an Fe⁰ unter Bildung des Hydridoclusters (μ_2 -H)(μ_2 -PHCH₂PPh₂)Fe₃(CO)₉ (4). Wird überschüssiges Fe₂(CO)₉ eingesetzt, so erhält man die ungewöhnliche Clusterverbindung 5 mit μ_3 -PCH₂PPh₂-Gerüst. 5 lagert sich bei höherer Temperatur unter Bruch des P-C-P-Ligandenrückgrats in die Fe₄P-Spiroverbindung (μ_4 -P)(μ_2 , η^2 -PPh₂CH₂)Fe₄(CO)₁₄ (6) mit Ph₂PCH₂überbrückter Fe-Fe-Bindung um. Die Röntgenstrukturanalyse von 6 (Raumgruppe $P2_1/n$) zeigt eine verzerrte Fe₄P-Spirostruktur. Die PPh₂-CH₂-Brücke mit kurzem P-C-Abstand (P(1)-C(1) 178.6(7) pm) bildet mit den Eisenatomen Fe(1) und Fe(3) einen verzerrten, nahezu planaren Fe₂PC-Vierring.

1. Einleitung

Primäre Phosphane RPH₂ reagieren mit ein- und mehrkernigen Übergangsmetallcarbonylen in vielfältiger Weise. Neben einfachen Substitutionsprodukten bilden sich unter oxidativer Addition der P-H-Bindung an M⁰ Zweikernkomplexe und Cluster mit stabilisierenden μ_2 -PRH-Phosphido- (A, 2 = H) oder μ_3 -PR-Phosphinidenbrücken (B) [2-4].

Correspondence to: Prof. Dr. O. Stelzer.

^{*} XXV. Mitteilung siehe Lit. 1.

Durch Einführung funktioneller Gruppen X mit Donorcharakter (z.B. R_2P) in der α -Position der Reste R gelangt man zu zweizähnigen primären Phosphanen XCH₂PH₂, die, ähnlich wie die sekundär-tertiären Methylenbisphosphane [5], zur Bildung von Clustern des Typs C mit μ_3 -(XCH₂PZ)-Brücken (Z = H) in der Lage sein sollten [6].

Donorfunktionalisierte primäre Phosphane XCH₂-PH₂, wie z.B. R₂PCH₂PH₂ (R = Alkyl, Aryl, H) sind ausgehend von Cl₂PCH₂PCl₂[5] oder Phosphinomethyltriorganostannanen [7] in Mehrstufensynthesen nur in mäßigen Ausbeuten zugänglich. Ph₂PCH₂PH₂ läßt sich jedoch auf wesentlich einfachere Weise durch phasentransferkatalysierte Phosphinomethylierung von PH₃ mit Ph₂PCH₂Cl unter Verwendung von wäßriger KOH als Hilfsbase darstellen [1].

Die Phosphidophosphanbrücke in den von den sekundären Phosphanen R₂PCH₂PRH abgeleiteten Clustern des Typs C $(X = PR_2, Z = R)$ wird bei erhöhter Temperatur unter Bildung der Cluster D gespalten [6]. Die analoge metallassistierte Phosphinidenfragmentierung des tertiär-primären Phosphans Ph2-PCH₂PH₂ sollte zu den bislang nur wenig bekannten Clustern D (Z = H) führen, in denen die Muttersubstanz der Phosphinidene, das PH, als Brückenligand fungiert [8]. Die Reaktivität der PH-Gruppierung und des aktiven eisengebundenen Wasserstoffs in den Clustern des Typs C mit Ph₂PCH₂PH-Brücke ließ als Alternative zur Phosphinidenfragmentierung des P-C-P-Gerüsts die weitere Aggregation eines Metallcarbonylfragments unter Bildung eines M₄-Clusterverbands erwarten.

2. Diskussion der Ergebnisse

Die Umsetzung von $Ph_2PCH_2PH_2$ (1) mit $Fe_2(CO)_9$ in Toluol bei 25°C liefert primär die beiden koordinationsisomeren monometallischen Komplexe **2a** und **2b** im Verhältnis von *ca.* 1/5 (Gl. (1), siehe Schema 1). Die sterisch weniger abgeschirmte PH_2 -Gruppe wird rascher komplexiert als die sperrige Ph_2P -Einheit. Bei längerer Reaktionsdauer (Lösungsmittel THF) werden **2a** und **2b** unter Koordination beider P-Atome des Liganden 1 in den bimetallischen Komplex **3** überführt (Gl. (2)).

2a und 2b wurden ³¹P-NMR-spektroskopisch durch Vergleich der Werte $\delta(P(PH_2))$, $\delta(P(PPh_2))$, ²J(PP) und ¹J(PH) untereinander und mit denen von 1 und 3 sicher identifiziert (Tab. 1). Der bimetallische Komplex 3 wurde isoliert und spektroskopisch sowie analytisch charakterisiert. Die Koordination an Fe⁰ ist mit einer starken Tieffeldverschiebung der ³¹P-NMR-Signale der Ph₂P- und PH₂-Donorgruppen im Vergleich zu 1 verbunden. Die Kopplungskonstante ¹J(PH) der PH₂-

Gruppe nimmt beim Gang vom freien Liganden zu den Komplexen **2b** bzw. **3** auf *ca*. 370 Hz zu. Entsprechende Beobachtungen liegen auch für das sekundärprimäre Phosphan $H(^{i}Pr)PCH_{2}PH_{2}$ [5] vor.

Mit überschüssigem $Fe_2(CO)_q$ reagiert 1 bereits bei ca. 50°C unter intermediärer Bildung der Komplexe 2a, 2b und 3 im Sinne einer oxidativen Addition der PH-Bindung an Fe⁰ rasch zu der intensiv blau gefärbten Clusterverbindung 4 (Gl. (3)), die im ${}^{31}P{}^{1}H$ -NMR-Spektrum das Vierlinienmuster eines AX-Spinsvstems $[A = P(H), X = P(Ph_2)]$ mit einer Kopplungskonstanten ${}^{2}J(PP)$ von 32 Hz zeigt. Das Signal der P(H)-Gruppierung ($\delta(P) = 114.5$ ppm) spaltet unter Protonenkopplung (³¹P-NMR-Spektrum) durch die ³¹P-¹H-Spin–Spin-Wechselwirkung in ein Dublett von Dubletts auf $(^{2}J(PP) = 32; ^{1}J(PH) = 458$ Hz). Das Vorliegen einer intakten P-C-P-Brücke in 4 wird durch ein Signal im ¹³C{¹H}-NMR-Spektrum bei $\delta(C) = 33.1$ ppm mit Quartettfeinstruktur (Dublett von Dubletts) $({}^{1}J(P(H) - {}^{13}C) bzw. {}^{1}J(P(Ph_{2}) - {}^{13}C) (14.0 bzw. 29.7 Hz))$ belegt, das der CH2-Einheit zugeordnet wird (Tab. 2). Für den Fe-ständigen Wasserstoff wird im ¹H-NMR-

 TABELLE 1. ³¹P-NMR-spektroskopische Daten der Verbindungen

 1-6. Chemische Verschiebung in ppm rel. zu 85% H₃PO₄, Kopplungskonstanten in Hz (Indizierung der P-Atome siehe Schema 1)

	δ(P(A))	δ(P(B))	² J(PP)	J(PH)
1	- 7.9	- 153.0	22	194.1
2a	70.2	- 162.1	13	198
2b ·	-15.2	- 39.5	40	368
3	68.2	- 44.2	30	373
4	68.4	114.5	32	458
5	- 19.7	214.6	49	
6	23.0	441.5	28	

Spektrum ein Signal bei -24.0 ppm im typischen Bereich von $\delta(H)$ für μ_2 -H-Brücken [9] mit Dublett von Dublett-Feinstruktur ²J(P(H)-H(Fe)), ³J(P(Ph₂)-H-(Fe)) beobachtet.

Die Clusterverbindung 4 mit metallgebundenem Wasserstoff und einer aciden PH-Gruppierung erweist sich als sehr reaktiv. Mit überschüssigem Fe₂(CO)_o bildet sich 5 (Gln. (4), (5)), dem wir aufgrund von NMR-spektroskopischen und massenspektrometrischen Daten die Struktur eines M₄-Clusters mit μ_3 -PCH₂PPh₂-Ligandenrückgrat zuschreiben. Im ³¹P{¹H}-NMR-Spektrum von 5 beobachtet man den Liniensatz eines AX-Spinsystems (A = $P(PPh_2)$, -19.7 ppm; X = P(Fe₃), 214.6 ppm, ${}^{2}J(PP) = 49$ Hz). In Übereinstimmung mit der vorgeschlagenen Struktur zeigt das Signal bei $\delta(P) = 214.0$ ppm keine ³¹P-¹H-Dublettaufspaltung im ³¹P-NMR-Spektrum. Es wird der μ_3 -PFe₃-Gruppierung zugeordnet [10]. Das ¹³C¹H}-NMR-Signal der CH₂-Brücke liegt im typischen Bereich der chemischen Verschiebung für die CH₂-Gruppe von M₃-Clusterverbindungen mit P-C-P-Ligandenrückgrat [11] und zeigt die erwartete Dublettvon Dublett-Feinstruktur $[^{1}J(P(A)-C) \text{ und } ^{1}J(P(B)-C)].$

Im ¹H-NMR-Spektrum von 5 werden keine Signale im Verschiebungsbereich für hydridische eisengebundene Wasserstoffatome gefunden. Die beiden Ph-Reste der Ph₂P-Einheit sowie die H-Atome der CH₂-Brücke sind infolge der unsymmetrischen Substitution an der μ_3 -PFe(Fe₂)-Gruppierung diastereotop. Im ¹³C{¹H}-

129.8 d f

141.3 d ^f

138.3 dd f

(44.2; 4.1)

(50.0)

(12)

6

-9.4 t

(180.5)^h

130.2 d

130.0 d

129.7 d

(11.1)

(10.3)

(9.9)

NMR-Spektrum von 5 werden daher für die C-Atome der aromatischen Ringsysteme jeweils zwei Signale beobachtet (Tab. 2). Die H-Atome der CH₂-Brücke repräsentieren den AB-Teil eines ABMX-Spinsystems (A, B = H(A), H(B); M, X = P(A), P(B)). Die Analyse des ¹H-NMR-Spektrums (Abb. 1) liefert die in Tab. 2 angegebenen Werte für δ H(A), δ H(B) sowie die Kopplungskonstanten ²J(H(A)-H(B)) und ²J(H(A,B)-P(A)) bzw. ²J(H(A,B)-P(B)).

Im Massenspektrum von 5 zeigt der Peak größter Masse $[M^+ - 4CO]$ das für ein Fragmention mit vier Eisenatomen zu erwartende Isotopenmuster.

Der Aufbau des M_4 -Clusters 5 läßt sich sich durch Addition des carbenanalogen Fe(CO)₄-Fragments an die Fe=P-Doppelbindung des aus 4 durch Wasserstoffeliminierung gebildeten intermediären Phosphinidenkomplexes 4a plausibel machen (Gl. (4)).

Reaktionen verwandten Typs sind bei der reduktiven Enthalogenierung von Dichlorphosphanen mit $Fe_2(CO)_9$ für den Aufbau der μ_3 -Phosphinidencluster $Fe_3(CO)_{10}(\mu_3$ -PR) verantwortlich [12].

Die Clusterverbindung 5 weist offensichtlich eine gespannte Phosphiniden-Phosphan-Brücke auf. Kurzzeitiges Erhitzen auf 60°C führt unter Bruch der (Fe₃)P-C-Bindung zu 6, einer Fe₄P-Spiroverbindung mit stabilisierender Phosphinomethylbrücke Ph_2P- CH₂.

6 läßt sich auch direkt aus 1 durch mehrstündiges Erhitzen mit überschüssigem $Fe_2(CO)_9$ darstellen. Die

7.2-7.7 m

4.33 m ^s

1.34 m ⁱ

0.21 mⁱ

¹³C{¹H}-NMR ^a ¹H-NMR CH₂ C1 b C2 **C**3 **C**4 CH₂ PH/PH, Ph 2.6 m^d 1 9.2 dd ° 138.6 d 132.2 d 128.1 d 1.6 m^d 128.4 s 6.9 m (27.2; 15.5) (14.3) (18.8)(6.8) 26.6 dd 129.3 d 5.0 d 3 132.5 d 131.5 d 131.7 s 3.2 m 7.1-7.9 m (20.8; 13.3) (46.9) (10.7)(10.6) (373) 33.1 dd 133.5 d 129.2 d 131.7 s 4 131.2 d 4.4 m 4.6 d 7.0-8.0 m (29.7; 14.0) (48.0) (13.6) (11.1) (458) -22.4 dd (30.0; 4.0) e 5 47.0 dd 133.0 d f 131.0 d 129.0 d 131.0 d 4.44 m^g 7.5-8.1 m (19.1; 9.9) (51.1) (10.7) (10.8)(2.9)

131.1 d

129.8 d

129.4 d

(3.2)

(2.9)

(2.5)

128.8 d

128.6 d

128.3 d

(12.4)

(9.0)

(9.9)

TABELLE 2. ¹³C{¹H}- und ¹H-NMR-spektroskopische Daten der Verbindungen 1, 3-6. Chemische Verschiebung rel. zu TMS intern. Kopplungskonstanten ⁿJ(PC) (n = 1-4) und ⁿJ(PH) (n = 1-3) (Hz) in Klammern

^a δ (CO): 3: 211.7 d (20.9), 212.3 d (18.0); 4: 207–215 m; 5: 208–214 m; 6: 204–214 m. ^b C-Atome der Ph-Reste; Indizierung: C1 = C_{ipso}, C2, C3, C4 = C_o, C_m, C_p. ^c s = Singulett, d = Dublett, t = Triplett, m = Multiplett. ^d AA'- bzw. BB'-Teil eines AA'BB'XY-Spinsystems (X = P(A), Y = P(B); Analyse siehe Lit. 1). ^c H(Fe). ^f Inäquivalente Ph-Reste der Ph₂P-Einheit. ^g A- bzw. B-Teil eines ABMX-Spinsystems (A = H(A), H(B); M, X = P(A) bzw. P(B)); ²J(P(A)-H(A)) = 3.2; ²J(P(B)-H(A)) = 12.6; ²J(H(A)-H(B)) = 15.5; ²J(P(A)-H(B)) = 11.1; ²J(P(B)-H(B)) = 11.1; ²J(P(B)-H(B)) = 11.1; ²J(P(A)-H(B)) = 11.1; ³J(P(B)-H(B)) = 12.1; ³J(P(B)-H(B)) = 3.2; ²J(P(A)-H(B)) = 12.0; ²J(H(A)-H(B)) = 12.1; ³J(P(B)-H(B)) = 3.2; ²J(P(A)-H(B)) = 12.0; Hz.

Abb. 1. 250 MHz-¹H-NMR-Spektrum von 5.

Spaltung des P-C-P-Gerüsts erfolgt hier nicht wie im Falle der tertiär-sekundären und sekundär-primären Methylenbisphosphane RR'PCH₂PRH (R, R' = H, Alkyl, Aryl) in M₃-Clustern des Typs C durch Verschiebung des H-Atoms vom Eisen an das C-Atom der CH₂-Brücke (Gl. (4a)) (Phosphinidenfragmentierung), sondern erst nach vollständiger Dehydrierung der primären Phosphangruppierung in einem M₄-Cluster.

Der Bruch des P-C-P-Ligandenrückgrats bei Bildung von 6 aus 5 ist mit einer deutlichen Hochfeldverschiebung des ${}^{13}C{}^{1}H$ -NMR-Signals der CH₂-Einheit

TABELLE 3. Bindungsabstände (pm) und Bindungswinkel (°) von 6

von 47.0 nach -9.4 verbunden. Ähnliche Werte $\delta(C)$ wurden für die Ring-C-Atome in den Phosphametallacyclopropanen L_nMPR_2CHR' (L = CO; M = Mn, Co; R = Ph, Cy; n = 4, 3) [13] sowie in Fe₂(CO)₄(μ -PMe₂-CH₂-PMe₂)(μ_2 -PPh₂)(μ_2 -PPh₂-CH₂) [14], mit einem Fe₂PC-Ringsystem wie in 6, gefunden. Überraschend ist die Triplettfeinstruktur des ¹³C{¹H}-[CH₂]-Signals von 6 mit einer ungewöhnlich großen Aufspaltung von 180.5 Hz [N = |¹J(P(A)-C) + ²J(P(B)-C)|].

Im ³¹P{¹H}-NMR-Spektrum zeigt 6 ein Spektrum vom Typ AX. Das Dublett bei 441.5 ppm (²J(PP) = 28 Hz) läßt sich durch Vergleich mit den für Fe₄P-Spiroverbindungen gefundenen δ (P)-Werten [15] dem vierfach verbrückenden P-Atom zuordnen, während das Dublett bei 23.0 ppm der Ph₂PCH₂-Einheit entspricht. Die Protonen der CH₂-Gruppe von 6 sind chemisch nicht äquivalent. Man beobachtet im ¹H-NMR-Spektrum ein Linienmuster, das den AB-Teil eines ABMX-Spinsystems (A, B = H(A), H(B); M, X = P(A), P(B)) repräsentiert. Die rechnerische Simulation des Spektrums liefert die in Tab. 2 aufgeführten Daten.

6 kommt also offensichtlich die Struktur des *cis*-Isomers (I) zu. Diese liegt auch im Festkörperzustand vor, wie die Röntgenstrukturanalyse (siehe Abb. 2) zeigt. Im *trans*-Isomer (II) mit einer von den beiden P-Atomen, Fe(1), Fe(3) und C(1) aufgespannten Symmetrieebene sind die H-Atome der CH₂-Gruppe äquivalent. Es sollte daher im ¹H-NMR-Spektrum für die CH₂-Brücke ein einfaches Spektrum erster Ordnung (Dublett von Dubletts, Spinsystem A₂MX; A = H, M, X = P(A), P(B)) zeigen. In Übereinstimmung mit der für 6 vorgeschlagenen Struktur sind die beiden Ph-

Fe(1)-Fe(3)	269.0(1)	Fe(4)-P(2)	233.0(2)	
Fe(2)-Fe(4)	274.2(2)	Fe(3)-C(1)	209.6(7)	
Fe(1) - P(1)	226.9(2)	P(1)-C(1)	178.6(7)	
Fe(1) - P(2)	226.2(2)	P(1)-C(211)	183.0(5)	
Fe(3)-P(2)	224.0(2)	P(1)-C(111)	182.8(5)	
Fe(2)-P(2)	231.2(2)			
Fe(1)-P(2)-Fe(3)	73.4(1)	P(2)-Fe(1)-P(1)	88.5(1)	
Fe(2) - P(2) - Fe(4)	72.4(1)	P(1)-Fe(3)	73.2(1)	
Fe(2) - P(2) - Fe(1)	133.4(1)	Fe(1)-P(1)-C(1)	102.7(2)	
Fe(2) - P(2) - Fe(3)	133.0(1)	P(1)-C(1)-Fe(3)	99.8(3)	
Fe(4) - P(2) - Fe(1)	127.9(1)	C(1)-Fe(3)-Fe(1)	82.3(2)	
Fe(4)-P(2)-Fe(3)	126.6(1)			

Reste chemisch inäquivalent. Dementsprechend werden, wie im Falle von 5, im ¹³C{¹H}-NMR-Spektrum jeweils zwei Signale für die Positionen 1-4 des aromatischen Rings beobachtet.

3. Röntgenstrukturanalyse von 6

Die Verbindung 6 kristallisiert in der monoklinen Raumgruppe P21/n. Die Ergebnisse der Röntgenstrukturanalyse sind in Tab. 3 und 4 sowie Abb. 2 zusammengefaßt. Das P-Atom P(2) und die Eisenatome Fe(1) bis Fe(4) bilden eine verzerrte Fe₄P-Spiroanordnung, in der Fe(1) und Fe(3) bzw. Fe(2) und Fe(4) direkt miteinander verknüpft sind. Die Dihedralwinkel zwischen den Ebenen Fe(1)-Fe(3)-P(2) und Fe(2)-Fe(4)-P(2) betragen 90.6°. Die Kante Fe(1)-Fe(3) wird von der Phosphinomethyleinheit Ph_2PCH_2 überbrückt. Der Abstand Eisenatome der Fe(1) und Fe(3) ist mit 269.0(1) pm wesentlich kürzer als von Fe(2) und Fe(4) (274.2(2) pm). Dies mag auf den Effekt der Ph₂PCH₂-Brücke mit dem kurzen P-C-Abstand zurückzuführen sein. Andererseits ist zu berücksichtigen, daß in der $Fe_2(CO)_8$ -Gruppierung in jeder Fe(CO)₄-Einheit drei CO-Liganden nahezu senkrecht zur Fe-Fe-Achse stehen und sich gegenseitig abstoßen. Entsprechende Befunde liegen für die Fe₄P-Spiroverbindungen mit μ_2 -Cl- bzw. μ_2 -PRR'-Brücken (R = $CH_2Ph, R' = CH_2PR_2) E [15] bzw. F [16] vor.$

Der Abstand der Fe-Atome der $Fe_2(CO)_8$ -Einheit zum Spirozentrum P(2) [Fe(2)-P(2) 231.2(2), Fe(4)-P(2)

Abb. 2. Molekülstruktur von 6.

TABELLE 4. Atomkoordinaten $(\times 10^4)$ und äquivalente isotrope Auslenkungsparameter $(pm^2 \times 10^{-1})$ von 6. U_{eq} : äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors

Atom	x	у	z	Ueq
Fe(1)	80(1)	3436(1)	6263(1)	39(1)
Fe(2)	- 3608(1)	3149(1)	5932(1)	49(1)
Fe(3)	- 908(1)	3080(1)	7721(1)	46(1)
Fe(4)	- 3110(1)	4559(1)	6528(1)	53(1)
P(1)	- 85(2)	2164(1)	6296(1)	41(1)
P(2)	- 1869(1)	3510(1)	6597(1)	39(1)
O(11)	2548(5)	3354(4)	6885(4)	90(3)
O(12)	491(5)	3629(3)	4497(3)	74(2)
O(13)	250(5)	5048(3)	6573(4)	73(2)
O(21)	- 4662(6)	2671(4)	7512(4)	93(3)
O(22)	- 3658(5)	1546(3)	5543(4)	86(3)
O(23)	- 5922(5)	3569(4)	5176(5)	109(3)
O(24)	- 2324(5)	3473(3)	4388(3)	73(2)
O(31)	1226(7)	2676(4)	8660(4)	113(3)
O(32)	- 829(6)	4578(4)	8467(4)	98(3)
O(33)	- 2688(6)	2500(4)	8856(4)	108(3)
O(41)	- 2009(6)	5005(3)	4958(4)	85(3)
O(42)	- 3814(6)	4167(4)	8222(4)	94(3)
O(43)	- 5443(6)	5217(4)	6094(5)	113(3)
O(44)	- 1853(5)	5839(3)	7276(4)	85(2)
α(11)	1583(6)	3357(4)	6648(5)	56(3)
C(12)	304(6)	3540(4)	5174(4)	49(2)
C(13)	163(6)	4424(4)	6455(4)	48(2)
C(21)	- 4252(7)	2895(5)	6917(6)	68(3)
C(22)	- 3587(6)	2163(5)	5686(5)	61(3)
C(23)	- 5057(7)	3415(5)	5479(6)	73(3)
C(24)	-2813(6)	3363(4)	4980(5)	55(3)
C(31)	412(8)	2816(5)	8276(5)	68(3)
C(32)	858(7)	4010(5)	8154(4)	58(3)
C(33)	- 2002(7)	2743(5)	8404(4)	63(3)
C(41)	- 2437(7)	4813(4)	5548(5)	59(3)
C(42)	3566(7)	4295(5)	7551(6)	66(3)
C(43)	- 4554(8)	4958(6)	6248(6)	80(4)
C(44)	-2318(7)	5327(5)	6984(5)	64(3)
C(1)	- 990(6)	2009(4)	7182(4)	50(2)
C(112)	1720(4)	1389(3)	7200(3)	69(3)
C(113)	2851	1069	7276	96(4)
C(114)	3614	1060	6600	85(4)
C(115)	3246	1370	5848	76(3)
C(116)	2115	1690	5772	66(3)
C(111)	1353	1699	6448	49(2)
C(212)	- 996(5)	849(3)	5655(2)	71(3)
C(213)	- 1469	374	5049	81(4)
C(214)	- 1630	635	4243	73(3)
C(215)	- 1318	1372	4042	70(3)
C(216)	844	1847	4647	53(2)
C(211)	- 684	1586	5454	48(2)

233.0(2) pm] ist signifikant größer als der zwischen P(2) und Fe(1) bzw. Fe(3) [Fe(1)-P(2) 226.2(2), Fe(3)-P(2) 224.0(2) pm]. Dies ist wohl auf die Wechselwirkung des sperrigen Brückenliganden Ph_2PCH_2 mit der Fe₂-(CO)₈-Gruppe zurückzuführen, die eine Aufweitung des Winkels Fe(2)-P(2)-Fe(1),(3) (133.0, 133.4°) gegenüber Fe(4)-P(2)-Fe(1),(3) (127.9(1), 126.6(1)°) zur Folge hat. Darüber hinaus ist zu berücksichtigen, daß die im Vergleich zu Fe(2) und Fe(4) (mit je vier CO-Liganden) höhere π -Elektronendichte an Fe(1) bzw. Fe(3) (mit drei CO-Liganden und Ph₂P- bzw. CH₂-Donor) zur Verkürzung der Bindungen Fe(1,3)-P(2) durch (M-P) π -Rückbindungseffekte führt.

Die Eisenatome Fe(1) und Fe(3) bilden zusammen mit C(1) und P(1) einen verzerrten nahezu planaren Ring (Abweichungen von der besten Ebene: Fe(1) -7.2; P(1) 11.0; C(1) -11.6; Fe(3) 7.8 pm), der mit der Ebene Fe(1)-Fe(3)-P(2) einen Interplanarwinkel von 94.2° einschließt. Während der Abstand Fe(3)-C(1) im typischen Bereich für Fe-C-Einfachbindungen [17] liegt, ist die Bindungslänge P(1)–C(1) [178.6(7) pm] im Vergleich zu der einer P-C-Einfachbindung (185.5 pm) [18] ungewöhnlich kurz. Die Bindungsverhältnisse im Fe₂PC-Vierring in 6 lassen sich daher durch ein Metallaylid mit komplexiertem ylidischem C-Atom beschreiben, wie dies von Lindner und Mitarbeitern [13] für Phosphametallacyclopropane, z.B. G, mit ähnlich kurzer P-C-Bindung [172.5(5) pm] im CoCP-Ring vorgeschlagen wurde.

Der P-C-Bindungsabstand im Fe_2 PC-Vierring von H [19] bzw. I [14] ist mit 176.5(2) bzw. 178.7(6) pm dem in 6 vergleichbar und legt damit auch für diese Verbindung eine P-C-Bindungsordnung größer eins in der PCH₂-Einheit nahe.

4. Experimenteller Teil

Alle Umsetzungen wurden unter Stickstoffatmosphäre durchgeführt. Sämtliche Lösungsmittel wurden frisch destilliert eingesetzt. Die Darstellung des primären Phosphans erfolgte nach dem in der Literatur beschriebenen Verfahren [1].

4.1. Umsetzung von 1 mit $Fe_2(CO)_9$

Zu einer Lösung von 0.93 g (4.0 mmol) 1 in 50 ml n-Octan wurden 1.46 g (4.0 mmol) Fe₂(CO)₉ gegeben und die Mischung 12 h bei RT gerührt. Das ³¹P{¹H}-NMR-Spektrum der klaren, tiefrot gefärbten Reaktionslösung zeigte die Signale von 1 (7.5%), **2a** (7.5%), **2b** (15%) und 3 (70%). Der Versuch, die Komplexverbindungen durch präparative Schichtchromatographie zu trennen, mißlang. Die Umsetzung von 0.93 g (4.0 mmol) 1 mit zwei Äquivalenten Fe₂(CO)₉ (2.91 g (8.0 mmol)) in 50 ml THF unter den gleichen Bedingungen liefert ausschließlich 3. Die Reaktionslösung wurde über Kieselgel 60 der Fa. Woelm abfiltriert und das Filtrat i. Vak. eingeengt. Der verbleibende Rückstand wurde aus 20 ml Petrolether 40/60 umkristallisiert. Dabei fiel 3 in Form roter Kristalle an. Ausbeute: 1.66 g (73%). IR (n-Hexan, cm⁻¹): 2057st, 1993m, 1955st (C=O). Molmasse: Gef. (massenspektrometr.): 568; ber.: $C_{21}H_{14}Fe_2O_8P_2$ 567.98. Analyse: Gef.: C, 44.34; H, 2.51; ber.: C, 44.41; H, 2.48%.

4.2. Darstellung der Clusterverbindung 4

Eine Lösung von 0.58 g (2.5 mmol) 1 in 150 ml Toluol wurde mit 3.64 g (10 mmol) Fe₂(CO)_o versetzt und anschließend 30 min auf 55°C erhitzt. Der nach Abziehen aller flüchtigen Anteile i. Vak. (20°C/0.1 mbar) verbleibende Rückstand wurde in 5 ml Toluol aufgenommen und der präparativen Schichtchromatographie unterworfen (PSC-Platten der Fa. Merck, Kieselgel Si60, Laufmittel Toluol/Petrolether 40/60 (1/4)). Die Zone mit dem $R_{\rm F}$ -Wert 0.4 wurde mit CH₂Cl₂ eluiert. Nach Einengen der Lösung fiel 4 als intensiv blauviolettes bis schwarzes Pulver an, das zur weiteren Reinigung aus Petrolether 40/60 bei -20° C umkristallisiert wurde. Ausbeute: 0.38 g (23%). IR (n-Hexan, cm⁻¹): 2070st, 2036st, 2010st, 1996st, 1974st, 1962m (C=O). Molmasse: Gef. (massenspektrometr.) 652; ber.: C₂₂H₁₄Fe₃O₉P₂ 651.85. Analyse: Gef.: C, 40.73; H, 2.11; ber.: C, 40.54; H, 2.16%.

4.3. Darstellung von 5

Zu einer Suspension von 0.58 g (2.5 mmol) 1 in 100 ml n-Octan wurden 3.64 g (10 mmol) Fe₂(CO)₉ gegeben und das Gemisch 1 h auf 80°C erhitzt und anschließend bei Raumtemperatur über Kieselgel 60 der Fa. Woelm abfiltriert. Aus dem Filtrat fiel 5 beim Abkühlen auf -20° C in Form roter Kristalle an. Ausbeute: 0.63 g (31%). IR (n-Hexan, cm⁻¹): 2070m, 2055st, 2040st, 2017st, 1998st, 1984st, 1974m (C=O). Molmasse: Gef. (massenspektrometr.): 706 (M^+ - 4CO); ber. C₂₆H₁₂ Fe₄O₁₃P₂ 817.73. Analyse: Gef.: C, 37.92; H, 1.73; ber.: C, 38.19; H, 1.48%.

4.4. Synthese der Spiroverbindung 6

Verfahren A: Das Phosphan 1 (0.58 g, 2.5 mmol) wurde zusammen mit überschüssigem $Fe_2(CO)_9$ (5.46 g (15 mmol)) in 100 ml Toluol 2 h auf 60°C erhitzt. Nach dem Abkühlen auf RT wurde die Reaktionsmischung über eine Schicht mit Kieselgel Si 60 filtriert und das Filtrat anschließend mit 4 g Kieselgel Si 60 versetzt und zur Trockene eingeengt. Nach säulenchromatographischer Aufarbeitung (Kieselgel Si 60, Laufmittel Petrolether 40/60) erhielt man 7 nach Eluieren der roten Zone mit CH₂Cl₂ als rotes Pulver, das zur weiteren Reinigung aus Petrolether 40/60 umkristallisiert wurde. Ausbeute: 0.73 g (35%). Verfahren B: Die Lösung von 0.20 g (0.24 mmol) der Clusterverbindung 5 in 30 ml Toluol wurde 2 h zusammen mit 0.36 g (1.0 mmol) $Fe_2(CO)_9$ auf 60°C erwärmt. Das ³¹P{¹H}-NMR-Spektrum der Reaktionslösung zeigte, daß sich ausschließlich 6 gebildet hatte. Die Aufarbeitung wie unter A lieferte 0.11 g (54%) 6. IR (n-Hexan, cm⁻¹): 2115schw, 2069st, 2049st, 2040m, 2032m, 1981m, 1975m (C=O). Molmasse: Gef. (massenspektrometr.): 846; ber.: C₂₇H₁₂Fe₄O₁₄P₂ 845.74. Analyse: Gef.: C, 37.92; H, 1.63; ber.: C, 38.34; H,

4.5. Kristallstrukturanalyse von 6

1.43%.

6, $C_{27}H_{12}O_{14}P_2Fe_4$, kristallisiert monoklin in der Raumgruppe $P2_1/n$ (Nr. 14) mit *a* 11.226(2), *b* 17.778(4), c 16.174(3) Å, β 90.49(3)°, V 3228(1) Å³, Z = 4, M = 845.7, $D_{ber} = 1.74$ g cm⁻³, F(000) = 1680. Im Winkelbereich $3^{\circ} \le 2\theta \le 50^{\circ}$ wurden auf einem Siemens P4-Diffraktometer die Intensitäten von 5719 unabhängigen Reflexen (Kristallgröße $0.18 \times 0.32 \times$ 0.40 mm, Mo K α -Strahlung) im ω -Betrieb gemessen. Nach der Datenreduktion verblieben 3985 Reflexe mit $F_{0}^{2} > \sigma F_{0}^{2}$, die für die anschließende Verfeinerung verwendet wurden. Bei den Intensitätsdaten wurde eine semiempirische Absorptionskorrektur (μ (Mo K α) = 19.2 cm⁻¹, ψ -Scan, min. Trans. 2.4%, max. Trans. 4.8%) angebracht. Die Struktur wurde durch direkte Methoden gelöst und nach der Methode der kleinsten Quadrate zu R = 0.060, $R_w = 0.059$ verfeinert. Hierbei waren die Gewichte durch die Gleichung $w = [(\sigma(F_{o}))$ $+ 0.012 F_0^2$ ⁻¹ gegeben. Alle Nichtwasserstoffatome erhielten anisotrope Temperaturfaktoren; die Positionen der Wasserstoffatome wurden geometrisch berechnet. Die Berechnungen erfolgten mit dem SHELXTL-Programmsystem [20].

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser Dank für die finanzielle Unterstützung dieser Arbeit. Der Fa. Bayer AG und Hoechst AG danken wir für großzügige Chemikalienspenden.

Literatur

- 1 XXV. Mitteilung: K. P. Langhans, O. Stelzer und N. Weferling, Chem. Ber., 123 (1990) 995.
- 2 G. Huttner, J. Schneider, G. Mohr und J. v. Seyerl, J. Organomet. Chem., 191 (1980) 161.
- 3 K. Natarajan, O. Scheidsteger und G. Huttner, J. Organomet. Chem., 221 (1981) 301.
- 4 F. Iwasaki, M. J. Mays, P. R. Raithby, P. L. Taylor und P. J. Wheatly, J. Organomet. Chem., 213 (1981) 185.
- 5 S. Hietkamp, H. Sommer und O. Stelzer, Chem. Ber., 117 (1984) 3400.
- 6 D. J. Brauer, S. Hietkamp, H. Sommer und O. Stelzer, J. Organomet. Chem., 281 (1985) 187.
- 7 H. Weichmann, B. Ochsler, I. Duchek und A. Tzschach, J. Organomet. Chem., 182 (1979) 465.
- 8 (a) D. J. Brauer, G. Hasselkuß, S. Hietkamp, H. Sommer und O. Stelzer, Z. Naturforsch., Teil B, 40 (1985) 961; (b) R. G. Austin und G. Urry, Inorg. Chem., 16 (1977) 3359.
- 9 K. Natarajan, L. Zsolnai und G. Huttner, J. Organomet. Chem., 220 (1981) 365.
- 10 A. J. Carty, S. A. MacLaughlin und D. Nucciarone, in J. G. Verkade und L. D. Quin (Hrsg.), *Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis*, VCH Publishers, Deerfield Beach, 1987, S. 559.
- 11 D. J. Brauer, S. Hietkamp, H. Sommer, O. Stelzer, G. Müller und C. Krüger, J. Organomet. Chem., 288 (1985) 35.
- 12 G. Huttner und K. Knoll, Angew. Chem., 99 (1987) 765.
- E. Lindner, E. Ossig und M. Darmuth, J. Organomet. Chem., 379 (1989) 107; E. Lindner, P. Neese, W. Hiller und R. Fawzi, Organometallics, 5 (1986) 2030; E. Lindner, K. A. Starz, H. J. Eberle und W. Hiller, Chem. Ber., 116 (1983) 1209.
- 14 N. M. Doherty, G. Hogarth, S. A. R. Knox, K. A. Macpherson, F. Melchior und A. G. Orpen, J. Chem. Soc., Chem. Commun., (1986) 540.
- 15 G. Huttner, G. Mohr, B. Pritzlaff, J. v. Seyerl und L. Zsolnai, Chem. Ber., 115 (1982) 2044.
- 16 D. J. Brauer, S. Hietkamp, H. Sommer und O. Stelzer, Z. Naturforsch., Teil B, 40 (1985) 1677.
- 17 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen und R. Taylor, J. Chem. Soc., Perkin Trans. II, (1987) S1.
- 18 A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson und R. Taylor, J. Chem. Soc., Dalton Trans., (1989) S1.
- 19 D. J. Brauer, A. Ciccu, J. Fischer, G. Heßler, O. Stelzer und W. S. Sheldrick, J. Organomet. Chem., eingereicht.
- 20 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-57117, der Autoren und des Zeitschriftenzitats angefordert werden.